Crystal and Molecular Structure of Tamaulipin-A, a trans,trans-Germacra-1(10),4-dienolide Sesquiterpene Lactone

By Michael E. Witt and Steven F. Watkins,* Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.

The crystal and molecular structure of tamaulipin-A (I), $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$, has been determined by single-crystal X-ray diffraction. Crystals are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=7.890(9), b=11.957$ (13), $c=14.649$ (17) \AA, $Z=4$. The structure was solved from diffractometer data by direct phasing techniques and refined by full-matrix least-squares to $R 8.1 \%$ over 732 reflections. The cyclodecadiene ring is in the chair-chair conformation, the methyl groups attached to $\mathrm{C}(4)$ and $\mathrm{C}(10)$ are in the syn- β orientation (absolute configuration inferred from independent data), and the α-methylene- γ-lactone is trans-fused at $\mathrm{C}(6)$ and $\mathrm{C}(7)$ with $\mathrm{H}(6) \beta$ and $\mathrm{H}(7) \alpha$. Weak intermolecular hydrogen bonds exist between the hydroxy-group at $\mathrm{C}(2)$ and the lactone carbonyl $[\mathrm{H} \cdots \mathrm{O} 2.2(1), \mathrm{O} \cdots \mathrm{O}$ $3.00(1) \AA$ A].

The trans, trans-germacra-1(10),4-dienolide sesquiterpene lactone tamaulipin-A (I) was isolated by Fischer and

(Ib)

Mabry ${ }^{1}$ from certain Mexican populations of the common ragweed Ambrosia confertiflora DC. On the basis of physical and chemical evidence they postulated a structure and stereochemistry (Ia) which we have now confirmed by single-crystal X-ray analysis. On the basis of n.m.r. results, and by reason of consistency with
the known absolute configuration of a related compound, we believe (Ia) and (Ib) represent the absolute stereochemistry of tamaulipin-A.

EXPERIMENTAL

Tamaulipin-A was recrystallized from absolute ethanol, and a pale yellow crystal measuring ca. $0.51 \times 0.42 \times$ $0.32 \mathrm{~mm}^{3}$ was mounted on a glass fibre. The crystal was bounded by faces of the orthorhombic forms $\{100\},\{001\}$, $\{010\}$, and $\{011\}$. Preliminary Weissenberg, precession, and cone-axis photographs established space group $P 2_{1} 2_{1} 2_{1}$. Intensity data were collected by use of Zr -filtered $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation on an Enraf-Nonius PAD 3 diffractometer. The $\theta-2 \theta$ scan technique, with $4.5^{\circ} \leqslant \theta \leqslant 25^{\circ}[0.1104 \leqslant$ (sin $\theta) / \lambda \leqslant 0.5946]$, was employed to measure the intensities of l 418 unique reflections in one octant. Throughout data collection, 3 reflections were measured periodically, but neither electronic nor crystal instabilities were detected.

The crystal scattered Mo radiation weakly and only 933 of the reflections had integrated intensities $I>\sigma(I)$. The variance was estimated as $\sigma(I)^{2}=I_{\mathrm{t}}+I_{\mathrm{b}}+0.08 I^{2}$, where I_{t} and I_{b} are the total and estimated background counts in the scan. Lorentz and polarization (Lp) corrections were applied to yield structure amplitudes $\left|F_{0}\right|$ and normalized
${ }^{1}$ N. H. Fischer and T. J. Mabry, Tetrahedron, 1968, 24, 4091.
structure factors E. The variance of each structure amplitude was estimated as $\sigma\left(\left|F_{\mathrm{o}}\right|\right)^{2}=\sigma(I)^{2} /(4 I \mathrm{~L} p)$.

Crystal Data. $-\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}, M=248$. Orthorhombic, $a=$ $7.890(9), b=11.957(13), c=14.649(17) \AA, U=1382 \AA^{3}$, D_{m} (flotation in aqueous NaBr$)=1.20, Z=4, \quad D_{\mathrm{c}}=$ $1.19 \mathrm{~g} \mathrm{~cm}^{-3}$. Space group $P 2_{1} 2_{1} 2_{1}$. Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Мо- $\left.K_{\alpha}\right)=0.89 \mathrm{~cm}^{-1}$.

Structure Solution and Refinement.-All structure invariant (Σ_{2}) relationships ${ }^{2}$ were determined for the 200 reflections with highest E values by means of the SINGEN link of the ' X-Ray ' 72 ' computing system. ${ }^{3}$ The phases of three origin-defining reflections, an enantiomorph defining reflection and two arbitrary reflections were assigned

Table 1
Atomic positional $\left(\times 10^{4}\right)$ and thermal parameters

$\left(\times 10^{3}\right)\left(\mathrm{H} \times 10^{3}\right.$ and $\left.\times 10^{2}\right)$				
Atom	X	Y	Z	U
C(1)	7 049(13)	$6186(8)$	1919 (7)	48(2)
$\mathrm{C}(2)$	8389 (13)	5 272(9)	$1851(7)$	$57(3)$
$\mathrm{C}(3)$	9 507(14)	5 494(8)	990(7)	50(3)
C(4)	$10179(11)$	6 666(7)	$1032(6)$	40(2)
C(5)	9 281(12)	7 483(7)	679(6)	40(2)
C(6)	9343 (12)	8 687(7)	917(7)	41(2)
C(7)	7 596(12)	9 216(8)	1072 (6)	50 (3)
C(8)	6 846(16)	$9125(9)$	2042 (8)	$59(3)$
$\mathrm{C}(9)$	6 002(19)	$8004(13)$) $2351(11)$	80(5)
$\mathrm{C}(10)$	$7091(12)$	7 041(8)	$2455(6)$	$51(3)$
$\mathrm{C}(11)$	7880 (12)	10363 (8)	718(7)	52(2)
C(12)	9 323(14)	$10345(9)$	118(7)	$57(3)$
C(13)	7 023(21)	11300 (13)) 876(11)	86(4)
C(14)	$11702(17)$	$6815(12)$) $1610(10)$	63 (3)
$\mathrm{C}(15)$	8 287(21)	$7167(17)$) $3267(10)$	88(4)
$\mathrm{O}(1)$	7 684(11)	$4157(7)$	$1788(7)$	
$\mathrm{O}(2)$	$10130(7)$	9340 (5)	184(4)	*
$\mathrm{O}(3)$	9888 (12)	11 044(5)	-407(5)	*
H(1)	620(8)	615(5)	141(4)	2(2)
$\mathrm{H}(10)$	718(13)	418(8)	127(6)	$7(2)$
$\mathrm{H}(2)$	898(11)	520(6)	249(6)	7(2)
$\mathrm{H}(31)$	889(9)	545(5)	$41(5)$	3(2)
H(32)	$1051(11)$	490(6)	$112(5)$	8(3)
H(5)	827(9)	728(5)	299(4)	$1(1)$
$\mathrm{H}(6)$	998(7)	888(4)	148(4)	$1(1)$
H(7)	$662(14)$	898(8)	$59(7)$	7(2)
$\mathrm{H}(81)$	787 (10)	922(6)	253(5)	$3(2)$
H(82)	617(16)	972(9)	202(7)	6(2)
$\mathrm{H}(91) \dagger$	512	781	189	6(2)
$\mathrm{H}(92) \dagger$	545	814	296	16(4)
$\mathrm{H}(131)$	778(11)	$1182(7)$	71 (6)	$4(2)$
H(132)	627(13)	$1129(8)$	131(7)	6(2)
$\mathrm{H}(141)$	$1251(15)$	659(9)	125(7)	9 (3)
$\mathrm{H}(142)$	1 202(10)	760(7)	160(5)	6(2)
$\mathrm{H}(143)$	$1167(15)$	$661(9)$	213(8)	7(2)
$\mathrm{H}(151) \dagger$	767	751	380	20(6)
$\mathrm{H}(152)$	869(16)	641(11)) $\quad 343(7)$	12(4)
$\mathrm{H}(153) \dagger$	927	765	310	18(5)
* $T=\exp \left[-2 \pi^{2} \sigma \cdot U \cdot \sigma\right], \quad \sigma=h a^{*}+k b^{*}+l c^{*}, U$ is a symmetric tensor with elements $U_{i j}$.				
Atom	$U_{11} \quad U_{22}$	U_{33}	$U_{12} \quad U_{13}$	U_{23}
$\mathrm{O}(1)$	89(6) 52(5)	110(7)	$-11(5) \quad 11(6)$	24(5)
$\mathrm{O}(2)$	60(4) 55(4)	58(4)	5(3) $12(4)$	8(3)
$\mathrm{O}(3)$	141 (8) 57(4)	68(4)	$-5(5) \quad 11(5)$	16(4)

\dagger Fixed in calculated positions.

values and used in the tangent refinement process of TANGEN. ${ }^{3}$ Of the four phase sets thus generated, the one with the highest figure-of-merit was used to calculate an E map, from which 13 of the 18 non-hydrogen atoms were located.

[^0]Successive least-squares and ΔF procedures yielded the approximate positions of all 38 atoms.

With isotropic temperature factors for all atoms, weighted $\left[w=\sigma\left(\left|F_{0}\right|\right)^{-2}\right]$ full-matrix least-squares refinement yielded $R 9.5$ and $R^{\prime} 9.3 \%$.* With anisotropic temperature factors for the three oxygen atoms, R dropped to 8.3 and $R^{\prime} 8.8 \%$. However, it was noted that the two hydrogen atoms bonded to the $C(9)$ methylene carbon, and two of the hydrogen atoms of the $\mathrm{C}(15)$ methyl group were in physically unreasonable positions. These four atoms were fixed in calculated positions for the last few cycles. The final R was 8.1 and $R^{\prime} 8.7 \%$, with 732 reflections contributing $[\mathrm{I}>2 \sigma(\mathrm{I})]$ and an error-of-fit of $1.48 . \dagger$
Atomic scattering factors for carbon and oxygen were from ref. 4 and for hydrogen from ref. 5.

Table 2
Interatomic distances (\AA) and angles (${ }^{\circ}$)

(a) Distances			
$\mathrm{C}(1)-\mathrm{C}(2)$	1.52(1)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.54(1)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.29(1)	$\mathrm{C}(7)-\mathrm{C}(11)$	1.48(1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.56(1)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.56(2)
$\mathrm{C}(2)-\mathrm{O}(1)$	1.45(1)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.44(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.50(1)	$\mathrm{C}(10)-\mathrm{C}(15)$	1.53(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.31(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.44(1)
$\mathrm{C}(4)-\mathrm{C}(14)$	1.48(2)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.33(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.48(1)	$\mathrm{C}(12)-\mathrm{O}(2)$	1.36(1)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.53(1)	$\mathrm{C}(12)-\mathrm{O}(3)$	1.22(1)
$\mathrm{C}(6)-\mathrm{O}(2)$	1.46(1)		
(b) Angles			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	126.2(9)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	116.4(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.8(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.4(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	113.4(9)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.4(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	108.8(8)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	123.6(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.9(8)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$	124.7(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.2(8)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	111.8(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	$115.0(9)$	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	108.6(8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	125.0(9)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	129.9(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	127.7(8)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	121.5(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	114.0(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	109.8(8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	111.1(7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	131.6(10)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(2)$	105.6(7)	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{O}(3)$	118.6(9)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	116.8 (8)	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(12)$	108.9(7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	101.2(7)		

(c) Interatomic contacts $<2.8 \mathrm{~A}$
(i) Intramolecular

$\mathrm{H}(1) \cdots \mathrm{H}(10)$	$2.5(1)$	$\mathrm{H}(6) \cdots \mathrm{H}(142)$	$2.2(1)$
$\mathrm{H}(2) \cdots \mathrm{H}(152)$	$2.0(1)$	$\mathrm{H}(7) \cdots \mathrm{H}(91)$	$2.5(1)$
$\mathrm{H}(31) \cdots \mathrm{H}(5)$	$2.2(1)$	$\mathrm{H}(81) \cdots \mathrm{H}(151)$	$2.4(1)$
$\mathrm{H}(31) \cdots \mathrm{H}(10)$	$2.4(1)$	$\mathrm{H}(81) \cdots \mathrm{H}(153)$	$2.1(1)$
$\mathrm{H}(5) \cdots \mathrm{H}(7)$	$2.5(1)$	$\mathrm{H}(82) \cdots \mathrm{H}(132)$	$2.2(1)$
$\mathrm{H}(6) \cdots \mathrm{H}(81)$	$2.3(1)$		
$($ ii $)$ Intermolecular			
$\mathrm{H}(10) \cdots \mathrm{O}(3)$	$2.2(1)$	$\mathrm{H}(92) \cdots \mathrm{O}(1)$	$2.4(1)$
$\mathrm{H}(6) \cdots \mathrm{H}(2)$	$2.3(1)$	$\mathrm{H}(92) \cdots \mathrm{H}(10)$	$2.3(2)$
$\mathrm{H}(81) \cdots \mathrm{H}(32)$	$2.5(1)$		$\mathrm{O}(1) \cdots \mathrm{O}(3)$
$\mathrm{H}(92) \cdots \mathrm{O}(3)$	$2.3(1)$		$3.00(1)$

RESULTS AND DISCUSSION

Atomic parameters are listed in Table l, molecular dimensions and significant contact distances in Table 2, and torsion angles in Table 3. Observed and calculated
${ }^{2}$ I. L. Karle and J. Karle, Acta Cryst., 1963, 16, 969.
${ }^{3}$ J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickenson, and S. R. Hall, Technical Report TR 192, Computer Science Centre, University of Maryland, 1972.
${ }^{4}$ D. Cromer and J. Mann, Acta Cryst., 1968, A24, 321.
${ }^{5}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
structure factors ($\times 10$) are deposited as Supplementary Publication No. SUP 22156 (5 pp.).*

Table 3
Torsion angles (${ }^{\circ}$)

$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-101
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	137
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	54
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	178
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-89
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	82
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	156
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-14
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-132
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	109
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	87
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	- 146
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-151
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	--24
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-79
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	161
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	67
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	-111
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	69
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	165
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	- 14
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	21
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	-160
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	148
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	-32
$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	-10
$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	170
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	170
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(3)$	-10
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(6)$	-6
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(6)$	174
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	19
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	143

The unit cell contains four discrete molecules (Figure 1), each consisting of a cyclodecadiene ring (A) and a
experimentally, we believe that (Ib) and Figure 2 represent the absolute stereochemistry by analogy with similar compounds of known stereochemistry, as discussed later.

Ring A.-The trans,trans-cyclodeca-1,5-diene ring is in extended chair or chair-chair conformation $(+-+-+-+-+-)$ analogous to that of transdecalin. Indeed, the conformations of six other germacranolide sesquiterpenes, for which detailed structural analyses have been carried out, can also be derived hypothetically from trans-decalin as follows. If the transannular bond $[\mathrm{C}(5)-\mathrm{C}(10)]$ of trans-decalin were ruptured, and equatorial hydrogen atoms at $\mathrm{C}(1)$ and $\mathrm{C}(4)$ extracted, two mutually perpendicular transethylenic bonds could be formed. As C(5) and C(10) move away from one another, the four axial positions at $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(5)$, and $\mathrm{C}(10)$ would fall into the planes of the π systems with only minor alterations of their former positions. Substitution of carbon (usually methyl) groups at $\beta-4$ and $\beta-10$ would then produce the synconfiguration common to this class of germacranolides, and further substitution at equatorial or β-axial positions would yield costunolide, ${ }^{6}$ elephantol ${ }^{7}$ (as p-bromobenzoate), eupatolide, ${ }^{8}$ germacratriene ${ }^{9}$ (as AgNO_{3} adduct), parthenolide, ${ }^{10}$ pyrethrosin, ${ }^{11}$ and tamaulipinA (Ib) (see Tables 4 and 5). The stereochemistry of a tamaulipin-A derivative, dihydrotamaulipin-A acetate, was determined from NOE results by Bhacca and Fischer, ${ }^{12}$ and is identical to the known absolute configuration of the related compound elephantol ${ }^{7}$ (as the p-bromobenzoate). We are thus confident that (Ib) represents the absolute configuration of tamaulipin-A.

Figure 1 Stereodiagram of one unit cell of tamaulipin-A. The intermolecular hydrogen bond is displayed bottom foreground
five-membered α-methylene- γ-lactone ring (B) trans-fused to ring a at $\mathrm{C}(6)$ and $\mathrm{C}(7)$ (Figure 2). Although it was not possible to establish the absolute configuration

* See Notice to Authors No. 7 in J.C.S. Perkin II, 1977, Index issue.
${ }^{6}$ F. Sorm, M. Suchy, M. Holub, A. Linek, I. Hadinec, and C. Novak, Tetrahedron Letters, 1970, 1893. The torsion angles calculated from the unrefined co-ordinates are those of the enantiomorph of costunolide.
${ }^{7}$ A. T. McPhail and G. A. Sim, J.C.S. Perkin II, 1972, 1313.

There is considerable strain in ring A, as judged by the $\mathrm{C}-\mathrm{C}\left(s p^{3}\right)-\mathrm{C}$ bond angles, but it appears to be localized in
${ }^{8}$ A. T. McPhail and K. D. Onan, J.C.S. Perkin II, 1975, 1798.
${ }^{2}$ F. H. Allen and D. Rogers, J. Chem. Soc. (B), 1971, 257.
10 A. Quick and D. Rogers, J.C.S. Perkin II, 1976, 465. The configuration at $\mathrm{C}(7)$ is incorrectly quoted as $7(R)$, and should be 7(S).
${ }_{11}$ E. J. Gabe, S. Neidle, D. Rogers, and C. E. Nordman, Chem.
Comm., 1971, 559.
12 N. S. Bhacca and N. H. Fischer, Chem. Comm., 1968, 68.
the $C(6)$ to $C(9)$ region (mean 117°) since $C(2)$ and $C(3)$ display angles near 109°. Endocyclic torsion about the $\mathrm{C}(10)-\mathrm{C}(1)$ double bond is found in all known germacranolide structures of this class (Table 4, mean $\omega_{10,1}$

positions 6 and 7 requires orientations $\mathrm{H}(6) \beta$ and $\mathrm{H}(7) \alpha$. The endocyclic bond angles average 107°, and the sum of the endocyclic torsion angle moduli (80°) indicates significant non-planarity. The conformation of the ring

Figure 2 Stereodiagram of the β-face of tamaulipin-A
165°) and is restricted to a narrow range of 7°. Of the four germacranolides with $C(4)-C(5)$ double bonds, the average torsion from 180° is greater than $\omega_{10.1}\left(159^{\circ}\right)$ but so is the range (19°). As was observed for melampodin, ${ }^{13}$
is that of an envelope, with $\mathrm{C}(6)$ at the flap. Conjugation of the exocyclic methylene and carbonyl groups is perturbed somewhat by the -10° torsion $\mathrm{C}(13)-\mathrm{C}(11)-$ $\mathrm{C}(12)-\mathrm{O}(3)$.

Table 4
Comparative endocyclic torsion angles $\left({ }^{\circ}\right)$

Comp.*	$\omega_{10.1}$	$\omega_{1.2}$	$\omega_{2,3}$	$\omega_{3.4}$	$\omega_{4.5}$	$\omega_{5.6}$	$\omega_{6.7}$	$\omega_{7,8}$	$\omega_{8,9}$	$\omega_{9,10}$
(II)	180	-60	60	-60	180	-180	60	-60	60	-180
(III)	161	-91	53	-102	166	-125	79	-83	78	-119
(IV)	163	-104	42	-77	156	-108	82	-119	83	-89
(V)	167	-98	50	-86	155	-136	90	-76	67	-155
(VI)	168	-116	47	-91	160	-120	85	-113	96	-95
(VII)	168	-107	52	-88	147	-124	96	-89	75	-109
(I)	165	-101	54	-89	156	-132	87	-79	67	-111

* Tamaulipin-A (I), idealized trans-decalin (II), costunolide (III), elephantol (IV), eupatolide (V), germacratriene (VI), and parthenolide (VII).

Table 5
Correlation and specification of absolute stereochemistries

	Chirality						β-Substituents \dagger				
Compd.*	2	4	5	6	7	8	10	2	4	6	8
(III)				(R)	(S)		C (Me)	H	C (Me)	H	H
(IV)	(R)	(R)	(R)	(S)	(R)	(S)	$\mathrm{C}(\mathrm{Lac})$ -	O (Lac)	$\mathrm{C}(\mathrm{Me})$	H	H
(V)				(R)	(R)	(R)	C (Me)	H	$\mathrm{C}(\mathrm{Me})$	H	OH
(VI							$\mathrm{C}(\mathrm{Me})$	H	$\mathrm{C}(\mathrm{Me})$	H	H
(VII)		(R)	(R)	(S)	(S)		$\mathrm{C}(\mathrm{Me})$	H	$\mathrm{C}(\mathrm{Me})$	H	H
(I)	(S)			(R)	(S)		$\mathrm{C}(\mathrm{Me})$	H	$\mathrm{C}(\mathrm{Me})$	H	H
Equatorial substituents											
	10	1	2	3	4	5	6	7	8	9	
(III)	Δ	$-\Delta$	H	H	Δ	$-\Delta$	O(Lac)-C	ac)	H	H	
(IV)	Δ	$-\Delta$	H	H			OR	C(Lac-	ac)	H	
(V)	Δ	$-\Delta$	H	H	Δ	$-\Delta$	O (Lac)-	ac)	H	H	
(VI)	Δ	$-\Delta$	H	H		$-\Delta$	H	vinyl)	H	H	
(VII)	Δ	$-\Delta$	H	H			O (Lac)-	(ac)	H	H	
(I)	Δ	$-\Delta$	OH	H	Δ	$-\Delta$	$\mathrm{O}(\mathrm{Lac})$ -	Lac)	H	H	
* See footnote to Table 4. \dagger All α-oriented substituents are H .											

these apparent torsions are composed of a true torsion and a bending of the $s p^{2}$ bonds, but the relative contributions cannot be accurately deduced from X-ray data.

Ring B.-Fusion of the lactone ring at equatorial

Interatomic Distances.-The paucity of data precludes detailed analysis, but the mean $\mathrm{C}=\mathrm{C}, \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$, and
${ }^{13}$ S. F. Watkins, N. H. Fischer, and I. Bernal, Proc. Nat. Acad. Sci. U.S.A., 1973, 70, 2434.
$\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ distances are as expected [1.31(1), 1.49(1), and $1.54(1) \AA]$. There is an intermolecular hydrogen bond between the hydroxy-group and the carbonyl
${ }^{3}$ W. C. Hamilton and J. A. Ibers, 'Hydrogen Bonding in Solids,' W. A. Benjamin, New York, 1967, p. 16, appendix.
oxygen of the lactone ring $[\mathrm{O}(3) \cdots \mathrm{H}(10) 2.2(1) \AA]$, and the apparent length indicates the bond is weak. ${ }^{14}$

We thank N. H. Fischer for the crystalline sample and the University of Houston for facilities.
[7/803 Received, 9th May, 1977]

[^0]: * $R^{\prime}=\left(\Sigma w \Delta^{2} / \Sigma w\left|F_{o}\right|^{2}\right)^{\frac{1}{2}}$. Function minimized $\Sigma w \Delta^{2}$ where $\Delta=\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|$.
 \dagger Error of fit is $\left(\Sigma_{w} \Delta^{2} / N_{0}-N_{\mathrm{v}}\right)^{\frac{1}{2}}$ where N_{0} and N_{v} are numbers of reflections and variables.

